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Diffusion burning of nonpremixed gases in a system of two~dimensional
turbulent jets is examined. The problem is solved with the aid of a
numerical method. Analytical results obtained for a hydrogen jet

in a jet of air are given in the form of graphs.

Heat- and mass-transfer processes in turbulent jets
in the presence of chemical reactions are of consider-
able scientific and practical interest.

Unfortunately, the study of such processes is asso-
ciated with great difficulties. These difficulties are
caused, on the one hand, by our insufficient knowledge
of the kinetics of chemical processes of practical in-
terest and, on the other hand, by the complete absence
of a rationally substantiated theory of turbulent trans-
fer processes. Consequently, all existing methods of
calculating jet flows in the presence of heat- and mass-
transfer and chemical processes [1-5] are based on
the extension of classical semiempirical theories of
free turbulence to include these more complex flows.

The present work, which in this sense is noexcep-
tion among the papers cited, is dedicated to the study
of motions in an infinite system of two-dimensional
turbulent jets in the presence of diffusion burning.

We examine the flow which forms in the mixing zone
of an infinite system of turbulent jets [10] expelled
from two-dimensional nozzles of a width of 2a (Fig. 1).
The walls between the jets are assumed infinitely
thin. Assume that one of the nozzles (1) expels an oxi-
dizer while the neighboring nozzle (2) expels a fuel.
The conditions at the nozzle outlet are taken as ho-
mogeneous, such that in the entire right half-plane,
there occurs a periodic flow—with period 4a—that is
symmetrical with respect to the axis of an arbitrary

jet. It is therefore sufficient to study the channel be-
tween any two neighboring central axes—for example,
between the axes y = 0 and y = 2a, which constitute
streamlines. The axis y = 0 will be taken as the zero
streamline.

For a turbulent Lewis number of unity, the basic
equations which describe the mean stationary motion
and the transport processes can be written in the fo‘rm
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The system of equations (1) must be solved for the
following boundary conditions:
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Fig. 1. Flow in an infinite system of two-dimensional jets in the
presence of a diffusion flame front: 1) y;x), 2) y2(x), 3) v, ().
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in the initial cross section for x = 0
u=u; H=H,; (=) p=p, 0<y<ag
w=—uy; H=Hy; ()=() p=p, a<y<2a,®
in any cross sectiony = 0; 2a
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In addition to (3) and (4), it is necessary to satisfy
the following integral conditions of mass conservation,
total momentum conservation, and enthalpy of the mix-
ture conservation:
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In the following, for convenience, we treat a gas
mixture in the mixing zone as a four-component mix-
ture congisting of the oxidizer (subscript 1), the fuel
(subscript 2), the product (subscript 3), and an inert
gas (subscript 4).

With the aid of a stoichiometric relation between
the amounts of burned-up substances

Wy, vz Mg + Wy v, my, =0,

(8)

where p, is the number of molecules of the k-th com-
ponent participating in the reaction, from the fourth
equation in system (1) it may be found that
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where
Co=c,vamzg+cgv,my, k=1, 2. (10)

It should be noted that w; and w_ are of different
sign.

For incompressible fluid jets, according to the new
Prandtl theory, the kinematic coefficient of turbulent
viscosity, €, has the form
(11)

& (x) = % b (%) (ug — )

We assume that formula (11) holds also in our case,
where b(x) = yi(X) ~ y2(X) for x = x; and b(x) = 2a =
= const for x > x; (Fig. 1).
By introducing a stream function ¥, defined by the
equalities
oy
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we satisfy identically the continuity equation.

Further, in the initial system of equations (1), we
transform to the dimensionless variables
u':i’ p'=L, H = i, T = T,
Uy P+ H, T,
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and from the variables x', y', to the generalized Mises

variables [6]
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After simple transformations, we get for (1) the fol-
lowing system:
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Conditions (3) and (4) reduce, respectively, to the
form:
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in (17)
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It can be readily seen that the equation for deter-
mining the inert gas concentration (w, = 0) reduces
to the form of the third equation in system (14). The
boundary conditions for the complex ((cq), - 04)/((c4)+ -
— (c4)_) are the same as the corresponding conditions
(15) and (16) for the complex denoted by C({', ¥'") (equal-~
ity (17)). Consequently
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We assume further that we are dealing with diffusion
burning, i.e., that the chemical reaction takes place
solely on an infinitely thin surface (flame front), where
the stoichiometric relations (8) are fulfilled and where
the entire amount of fuel and oxidizer supplied burns
up. Hence, on one gide of the flame front, we have a
zero oxidizer concentration, and on its other side a
zero fuel concentration.

In the area between the flame front and the channel
boundary (0 = ¥'= ¥}) ¢y = 0, while from relations
(10) and (17) it may be found that
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In the area between the flame front and the other chan-
nel boundary (% = ¥' = 1), the fuel concentration is
zero (c; = 0). From relations (10) and (17), the oxi-
dizer and reaction-product concentrations are deter-
mined as
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At the flame~front surface, the fuel and oxidizer
concentrations are zero. Making use of this condition,
we find that at the flame front

(Cy = (e vimy (Coly = (o) vamna. (24)

With the aid of these relations, from (17), we deter-
mine the value of C at the flame front:
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Points on the plane (¢, ') at which the condition C(¢', ¢') =
= Cx, is fulfilled form the surface of the flame front.
It should be noted that for given fuel and oxidizer param-
eters, the value of Cx is defined solely by the initial
fuel and oxidizer concentrations.
From the equation of state, a relation for determin-
ing the density can be obtained in the following form:

9 ’
o = o (26)
ROT T

where T' is determined from the expression for the
enthalpy (2)
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The system of equations (14) will be solved by the
network method. To this end, we divide the plane (¢',¢")
mto rectangles by means of the straight lines 5 = ih,
AI)—Jl(l 012 ., §j=0,1,2,,..,n). For each
mternal point (51, l,b'i), Eq. (14) will be replaced by a
system of finite-difference equations [7]:
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Conditions (16) will be expressed also in finite-dif~
ference form,
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where Z =u', H', C.

An iterative technique is applied to the solution of
the obtained system of nonlinear equations. To obtain
the iterations u'is,j’ system (28) is written in the form
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Systems (29) and (30) can be written in a similar

manner, First, we fix the pressure, assuming that

'1t =pj_. As the zero approximation for p;7", u;;"
we take their values from the preceding layér, and
then evaluate the first approximation for all the values
to be determined (for fixed pressure). For evaluating
the second approximation, we assume ;"' = (u;’ 4+ u/’,)

/2; p's”l = (pz'ol + pl"/ Y2 , and so forth., Solutions to (32)
and similar equations for determining H i,jr Cy . for
conditions (16) and (31) were obtained by a brufe force
technique [7]. The conditions for which the iteration
process ceased to converge have the form

3
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After fulfilling conditions (33) with respect to the ob-

tained values of p' and u', we checked the inequality
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which follows from conditions (5) for mass conserva-
tion and the first relation in system (12). The selected
value for the pressure was considered correct if (34)



was fulfilled. Otherwise, the value of p'it was changed,
1

depending on the value of the integral \-——- . The
P

0
calculations were then repeated until conditions (33)
and (34) were fulfilled, When this was accomplished,
we turned to the next layer, and so forth,

Conditions (6) for total momentum conservation and
for conservation of the enthalpies (7) were used to
check the obtained solutions. Computations showed that
these conditions were fulfilled with the same degree
of accuracy as relation (34). Hence, intheplane (¢',3"),
the problem can be followed through to the end.

Transition to the physical plane (x',y') was achieved
with the aid of the following formulas:
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which derive from the first relations in (12) and (13),
respectively.

On the basis of the scheme developed above, burn-
ing of hydrogen in air was calculated on a 2M high-
speed computer for Pr = Sc = 0,5, The conditions at
the outlet are as follows: uy = 70 m/sec, u! = 0.534;
T, =1000°K, TL = 1; p,= po=1latm, p_=pg= 1 atm;
(e, = 0.2, (cp)_ = 0.05; (cgy = 0.8, (cy_ = 0.95; (cg), =
=0, (c3)_ = 0. The excess oxidant ratio is o = 1.58,

Figure 2 shows the profiles of 1) oxidizer concentra-
tion, 2) fuel concentration, 3) product concentration,
and 4) temperature, in two cross sections, together
with the flame-front shape 5). From the figure, it can
be seen that the flame front closes at the axis of the
fuel jet (according to expectations, because of the con-
dition a > 1), while at the surface of the flame front,
the product concentration and mixture temperature
have maximum constant values.

Figure 3 shows velocity and density profiles which
reveal that for parallel-jet mixing and diffusion burn-
ing, the velocity profiles can possess a maximum not
at the boundaries of but inside the mixing zone. This
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Fig. 2. Profiles of 1) oxidizer concentration, 2) fuel

concentration, 3) product concentration, 4) tempera-

ture, in two cross sections of the jet (¢'=0.01; ' =
= 0.16); 5) shape of flame front.

ars

946

I ’
¢ 4 —P
D S e s s a7
1z X : 05
10 AL a3
)
08 o
%5 ez o« a6 a8 ¢’

Fig. 3. Velocity profiles in the cross

gsections £'=0.01 (1), £'=0.05 (2),

£'=0.1(3), and the density profile
for £' = 0.05.

may be attributed to the low density of the mixture in
the zone adjacent to the flame front and to the action
of a favorable pressure gradient.

Figure 4 shows (1) the relation between the vari-
ables nx' and £', (2) the changes in velocities u'(¢', 1),
(3) u'(£',0), (4) the maximum velocity u'y, as well
as (5) the changes in the pressure difference along the
axis. The phenomenon we have pointed out resembles
in many ways the known phenomenon in tubes [8, 9],
where in the case of external heat input to the tube
wall, a subsonic flow within the tube is accelerated
while the pressure along the tube decreases.

In the calculations for point £'=0, ¢' = (p'u'_)/
/(L+p'lu'), it was assumed that u' = 1 + ut)/2, p!
=(1+pl)/2, H' = (1 + HL)/2, and C = 0,5; in formula
(36), we have b'(0) = 27 when passing to the plane x',
y'. The values employed for &; were £y = g5 = 0.001,
and g5 = 0.01,

NOTATION

X, y and u, v are the longitudinal and transverse
coordinates and velocities, respectively; p is pressure;
m is the molecular weight; c_ is the specific heat at
constant pressure; H is the total enthalpy of mixture;
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Fig. 4. (1) relation between the variables nx'
and ¢', (2) behavior of velocity u'(¢', 1), (3)
behavior of velocity u'(¢',0), (4) behavior of
maximum velocity u‘d(g ", and (5) changes in
the pressure difference along the axis.



¢ is the kinematic coefficient of turbulent viscosity;
Pr and Sc are the turbulent Prandtl and Schmidt num-
bers; cj, wj, hi*, and Cpj.» are the mass concentra-
tion, mass-formation rate, heat of formation, specific
heat at constant pressure of the i-th component, m;
is the molecular weight of the i-th component, respec-
tively; Ry is the universal gas constant; T is the abso-
lute temperature; N is the number of components; p; is
the initial pressure; » is the empirical turbulence con-
stant; b(x) is the width of mixing zone; o is the excess
oxidizer ratio; x; is the abscissa of initial cross sec-
tion of main zone. Subscripts: d is for the maximum
value of a function; b is for the minimum value of a
function; (+) is for the initial value for nozzle 1; (-) is
for the initial value for nozzle 2; (x) is for the value of
a function at the flame front. A bar denotes dimen-

sionless values.
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